() Structure theorem of Empire Lie algebra
Thun (i) g is a compare Lie algebra
$$g = 3(s) \oplus [g g]$$

[0] g is semi-simple.
(ii) A simple Lie algebra g is Lampire iff $B < 0$.
Here we assume g is real. The reason is any empert complex lie group merelie a torus.
Pefm: g is culled compare if $\exists G$ compare Lie(E) = g.
Pf: The key is that an $g \exists Ad$ invariant inner product \langle , \rangle .
Use define:
 $\langle X, Y \rangle := \int \langle Ad(g)(X), Ad(g)(Y) \rangle dx$
 $Here measure
 $\forall \langle Ad(h)(X), Ad(h)(h) \rangle = \int \langle Ad(gh)(X), Ad(gl)(Y) \rangle dx$
 $= \langle X, Y \rangle$.
Hence, $a = g \exists \langle , \rangle$ bilineer. positive definit & symmetric
And $(ad_X, z) + \langle Y, ad_X z \rangle = a$ (since $\langle Ad(eq(tX)(Y), Aleq(tx))(t) \rangle$)
 $\Rightarrow ad_X$ is stee symmetric is \langle , \rangle
 $\Rightarrow B(x, y) = tr(ad_X, dy)$
 $= \langle X, Y \rangle$
 $\Rightarrow B(x, y) = tr(ad_X, dy)$$

Namely - B(x, y) is a Ad-invertext Production J.
Rad(R) =
$$\{x \mid ad_x = p\} = J(J)$$
.
Note on $q \equiv \langle , \rangle$ positive definite bilinear from
(x) $J(S)^{\perp} = q'$
(x, $[y, J] > = \langle [x, y], J > ; \Rightarrow$ itf RHS= p
 $x \in J(S)$, (=) $x \in (Q^{1})^{\perp}$
Hence $q = J(S) \oplus q'$. on q' , $B is Senit
Hence $q = J(S) \oplus q'$. on q' , $B is Senit
For (ii), if q is simple & $B
 q is comparent is due to the observations $BJ(S) = p$
 \Rightarrow ad: $q \Rightarrow Aut(q)$ is initial induction image f Al.
Namely ad_{1} , q in $int(q) = Lie (Jut(q))$
(D) and $J_{1}t(f) \subset O(q) = must be comparent.
Since q Can be equipped with ad-inverse metric $-B$
di)
(\Rightarrow) is trivid by (i), since q is simple & $T(S) = p$
 \Rightarrow $B < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
Constant, $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$
(more $q = J(S) \oplus J_{1} \oplus \cdots \oplus J_{k}$ & gi are simple $B|_{q} < p$$$$$

2 Usyl theorem: (1) A compact Lie group with first certs much
(2) May Lie Group & has a Lie algebre which is semi-simple &
-800 must be compact. It has first center & ITT(4) K-400
In particular, the universal cover
$$\tilde{G}$$
 is compact & has finite center
Pf ii) The proof here uses Riemanian gamety, fullowing Milner.
Pf iii) Algebraic proof. See Variadrajan \$4.11.
(iii) Alternatively let G_1 be the compact one with Lie(G_1) = g_1 (existence is by the)
Gi its universal cover. If $T_1(G_1)$ is finit, \Rightarrow G is compact. \Rightarrow Any g with
Bochner technique shows $b_1(G_1) = 0$, tende $T_1(G_1)$ is finit.
Defn: G_1 is called $\begin{cases} nilpstart & ig_2 & ig_3 \\ Salveble & ig_3 & ig_4 \\ Salveble & ig_3 & ig_4 \\ Salveble & ig_4 & ig_4 \\ Salveble & growthen. \\ Key is $\left(\frac{Y(exp(tx))}{F(x)}\right) = \exp(t \, dg(t))$
Apply it to $y = Ad$
 \Rightarrow $Ad(exp(tx)) = exp(t \, dg(t))$
Apply it to $g = Ad(exp(tx)) = id$.
Apply it to $g = xp(s \, Ad(exp(tx)) = id$.
 $Apply it to a (exp(sy)) = exp(s \, Ad(exp(tx)))(Y)$
 $exp(tx)$
 \Rightarrow $exp(tx) (exp(sy)) exp(tx) = exp(s \, Y)$
 \Rightarrow For local s $exp(tx) = ixp(tx)$$

(a) We can prove it using Barnet-Meyer therem.
(M.5) a complete Riemannian manifold with Rice 25 g

$$\Rightarrow$$
 Ric(X,Y) $\stackrel{<}{>}$ S $5(X,Y)$
Miscompart & $|\overline{u}(M)| < +\infty$ by
G has Lie algebre g B (0 or g .
 \Rightarrow B is Ad invariant (Since B is ed-inversion)
 \Rightarrow B is Ad invariant (Since B is ed-inversion)
 \Rightarrow B (an be extended to G as a bi-inversion to $f(H)$
 \Rightarrow B (an be extended to G as a bi-inversion to $f(H)$
 \Rightarrow B (invariant (Since B is ed-inversion)
 \Rightarrow B (invariant (Since B is ed-inversion)
 \Rightarrow Riemannian here $(\langle (dR)_{e}(K), (dR_{y})_{e}(Y) \rangle_{e}$
 \Rightarrow Luck kaspul Rummina here $(\langle (dR)_{e}(K), (dR_{y})_{e}(Y) \rangle_{e}$
 $= \langle (dR)_{e}(K), (dR_{y})_{e}(Y) \rangle_{e}$
 $= \langle (dR)_{e}(K), (dR_{y})_{e}(Y) \rangle_{e}$
 $= \langle (dR)_{e}(K), (dR)_{e}(Y) \rangle_{e}$
 $= \langle (dR)_{e}(K), (dR)_{e}(K) \rangle_{e}$
 $= \langle (dR)_{e}(K), (dR)_{e}(K)$

(=)
$$ad_x = 0$$
 nearly $[x, y] = 0$ $\forall x, y$.
G is (elled solvable if $G_1 = [G, G]$
 $[G, G] = H_1$ set prop generated by $abe^{-1}t^{-1} + e_1 t \in G$
 $G_{11} := [G_{11}, G_{11}] & G_1 = \{e^{-1}\} f^{-1} som k$.
Since $\frac{\partial^2}{\partial t s s} \Big| exp(tX) exp(sY) exp(tX) exp(sY) = exp(tX) exp(sY)$
 $= \frac{\partial^2}{\partial t} \Big| [Ad(exp(tX))(Y) - Y] = ed_x Y = [X, Y]$
The construction is related.
"G is solvelle iff g is solvelle "
Connected Lie fromp
Idel (\longrightarrow horned subjroup sub-show $x = e^{-1}$ set props
 $[X, y] \in h$ $[\frac{ghg^2 \in H}{dt}$ $x = f = \frac{g}{dt}$ $[y, z] \in h$ $\forall f \in g$.
We shall see that for semi-scape Lie elfebre, one can been a
 $lot h_2$ being the maximum Abelian sub-space if $\forall t' = Abelian$
sub-sights, $t < t = \frac{g}{dt}$ $z = \frac{g}{dt}$ $[y, T' = e Abelian sub-space C for $y = \frac{g}{dt}$ $z = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $z = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $z = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = 1 - e Abelian sub-space C for $y = \frac{g}{dt}$ $[y = \frac{g}{dt}]$ $[y = \frac{g}{dt}$ $[y = \frac{g}{dt}]$ $[y = \frac{g}{$$$$$$$$$$$$$$$$$$

4) Normalizer & Centralizer G. K subgroup $N(K) := \{g \mid g K g^{\prime} c K \}$ a group since K is 9. $N(h) := \begin{cases} a \in q \mid [a, h] \subset h \end{cases}$ $[x, y], \delta] = - [[y, \delta], x] - [[\delta, x], \delta] \in h$ $\in h$ $\forall \delta \in h$. N(K) is the maximal subgroup L such that K is normal in L. N(h) is the maximal subalgebra & such that h is an ideal in k. $\frac{i3er}{Z(K)} := \{ S \mid S_{K-X}, \forall X \in K \}$ $Z(K) := \{ S \mid S_{K-X}, \forall X \in K \}$ $Z(K) := \{ S \mid S_{K-X}, \forall X \in K \}$ $[(X \forall) h]$ $= - [(Y_{1}, h], x] - [(h, x], y]$ Centralizer G. K- any set $g^{-1} \in \mathbb{Z}(K)$ if $g \in \mathbb{Z}(K)$. Int(g) C (Aut (g)), by the definition. 5) 2: Int(g) (Ant(g)), is the inclusion map ada a dr: (nt(g)) Der(g) is a isomorphism, by Since what we proved Zis a covering map which is outo. (Also int since it is the inclusion map) =) Aut (g) / Int (g) ~ Aut (g) / (Aut (s)) - herce